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ABSTRACT

Heat transfer rate distributions were measured in the separated
regions of a two-dimensional backward facing step, an axially symmetric
backward facing step, a blunt two-dimensional base, a sharp protruding
two-dimensional leading edge and in the leading edge bubble over the
surface of a flat nosed two-dimensional model. All measurements were
performed in the straight section of the shock tube at shock Mach numbers
between 5.5 to 11, with free stream flow Mach numbers of 1.6 to 2.7,
Reynolds numbers (based on the attached flow length or step height) of
3 x 102 to 5 x 10S and stagnation to wall enthalpy ratios of 3 to 50.

The results of these measurements are compared with measurements of

heat transfer rates in various base type separated flows obtain in

various wind tunnels and to a calculation of heat transfer behind a back-
ward facing step based on the integral method. In most of these investiga-
tions a high peak in the heat transfer rate is found to occur in the re-
attachment zone. Maximum heat transfer rate values of up to 10 times the

flat plate heat transfer rate are reported in various investigations, An
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inverse relation between the value of the peak heat transfer rate and the
distance between the separation point to the position of the maximum

heating in the reattachment zone is shown to exist,

o
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I. INTRODUCTION

Flow separation at supersonic and hypersonic speeds is known to have
strong effects on the local heat transfer rates to body surfaces particular-
ly in the reattachment zonc., In general, it was found that heat transfer
rates are decreased in the "dead water'" zone and increased in the reattach-
ment zone in comparison with the flat plate heat transfer rates under
similar flow conditions. The net increase or decrease of the hecat transfer
in the separated flow as a whole is not easily determined. In many case:
the increase in the heat transfer in the reattachment zone is much greater
than the corresponding reduction found in the ''dead water' zone In many
practical applications, however, the important paramcters are the value of
the maximum heat transfer rate and the location of his "hot'" spot in the re-

attachment zone.

For the past several years, heat transfer rates in separated flows have
been studied in this laboratory. It is the purpose of this paper to summarize
some of the more significant results of these studies, to comparec the results
with other published measurements and to discuss the main parameters affecting
the local heat transfer rates in separated flow including also rcference to

the analytical studies.

The measurements on which this paper is based were made in the supersonic
high enthalpy flow in a 3" x 3" shock tube and have included the following

model configurations: two-dimensional backward facing step (Ret. 1), axisymmctric




backward facing step (Ref. 2), two-dimensional blunt base (Ref. 3), sharp

protruding leading edge (Ref. 4) and two-dimensional leading edge separation

bubble (Ref. 5).

The shock tube has been found to be a very useful facility for many types
of heat transfer studies and was also found to be suitable for heat transfer
measurements in separated flows (discussed in References 6,7 and 8). In the
present investigation, the heat transfer measurcments wcre obtained in a shock
tube using a number of model configurations and over a range of physical para-
meters; there are very few measurements of local heat transfer on similar
configurations performed in other facilities with which to compare the present
data. Some measurements of local heat transfer rates behind a two dimensional
and axially symmetric backward facing steps performed in conventional wind
tunnels are presented in References 9, 10, 11 and 12, so that comparison bhetween
the shock tube measurements and those obtain in the wind tunnel is of particular
interest. The main contribution of this comparison may be in providing an
indication of the effect of the large differences in the flow stagnation enthalpies
in the shock tube vis a vis the wind tunnel and of the effect of the highly cooled
boundary layer on the models in the shock tube compared to that of the wind tunnel
test conditions. The fact that many of the aspects of the data are comparable,
certainly qualitatively, and for some measurements even quantitatively, as will

be shown later, is very encouraging and may add to the acceptance of heat transfer

measurements in separated flow in the shock tube facility.




An analytical evaluation of the laminar heat transfer variation behind
a two-dimensional backward facing step was presented in Ref. 13. This study
uses the formulation of the integral conservation equations for evaluation
of the heat transfer rate distribution. The calculated heat transfer rates
show a growth of a peak in heat transfer in thec reattachment zone at increasing
Reynolds numbers., In most of the experimental data such a peak is indeced

detected.

The resuits of the analytical calculation and those obtained in shock
tube and wind tunnel measurements will be discussed in this paper., The shock
tube measurements will be presented first, followed by a discussion of the

other measurements and the calculation.

II. THE EXPERIMENTAL APPARATUS

1. The 3" x 3" Shock Tube

The experiments described herein were performed in the 3' x 3" shock tube
of the Aerodynamic Laboratory of the Technion's Department of Aeronautical
Engineering. The shock tube has a 3 inch diameter 2 meters long high pressure
section and a 7 meters long 3'" x 3" square low pressure section., This tube is
also used to operate a 10" x 12" shock tunnel nozzle. During testing the low
pressurc scction is evacuated to the pressure level required by the test con-
ditions (minimum pressure is approximately 0.7 mm Hg. absolute), the test gas

is air in all cases, The driver gas in then introduced to the high pressure




section from high pressure bottled hydrogen or air. The driver pressure is
controlled by a copper diaphragm which is scribed to a predetermined depth
depending upon the required pressure. The scribing also provides a
relatively "clean" break in the copper diaphragm. Further details on the

instrumentation for the shock tube operation are described in Refercnces 1 - S,

The local heat transfer rates are mcasured by the thin platinum film
resistance thermometers sputtered on pyrex glass described in References 1 - 5

and in more details in Ref. 14,
2. The Models

The five models used to study the heat transfer in separated flow are
shown in Fig. 1. These models have the following base type separated flow
geometries: (1) two-dimensional backward facing step, (2) axisymmetric back-
ward facing step, (3) two-dimensional hlunt base, (4) sharp protruding leading
edge, (5) two-dimensional:leading edge separation bubble. The models are made
of steel with a pyrex glass insert on which the platinum films are sputtered.
The thin film gage are of about 0.5 mm width and are positioned about lmm to

2mm apart at Ax/h values between 0.3 to 10, behind the separation point,

III. TIME OF ESTABLISHMENT OF STEADY CONDITIONS OVER THE SEPARATED ZONES
IN THE SHOCK TUBE.

The short test time in the shock tube raises the question of whether or
not uniform flow conditions are established in the separated region during the

test time available, It has already been shown in the results presented in




References 1 to 8 that steady heat transfer conditions are indeed obtained

in the shock tube tunnel tests, The total available test time as a function
of the shock llach number is presented in Fig. 2. The available test time is
the time between the passage of the incident shocx wave and the arrival of the
contact zouc uisteronnces to the model location, It is scen that about 380
microscconds of test time are available at a shock Mach number of 2 and 90
microseconds at a shock ‘lach numher of 10, The durastion requitved to establish
steady heat transfer conditions after initioting the flow Heaind the shock
front is determined from the instantancous heat transfer measurcements in the
various zones in the separated flow, The longest duration rcquired to establish
steady conditions is found to e in the '"dead water' zone. It may be seen in
Fig. 2, that even in the mixing =onc steady conditions are established well

within the available test times in the shock tube.

IV, HEAT TRANSFER HEASUREMENTS IN THE StIOCK TUBE EXPERIMENTS

The heat transfer rate measured at each gage position is presented in terms

1/2, and is plotted as a function of distance behind

of the parameter, Nux/PrRex
the separation point, Ax/h, in Fugures 3, 4, 5 and 6 for the two dimensional
and axially symmetric steps, the sharp protruding leading edge and the leading

edge separation bubble, respectively. In these shock tube tests both the initial

pressure and shock Mach number are varied, therefore the flow Mach number, Reynolds

number and the stagnation to wall enthalpy ratio are varied simultaneously. The

data obtained in these shock tube experiments must be examined as a function of




the various test conditions so that the effects dominating the heat transfer

in the separated flow can be found.

The variations of the local heat transfer rates measured behind a two-
dimensional step are presented in Fig. 3. These measurements show a low heat
transfer rate in the dead water zone then an increasing heat transfer rate
towards the reattachment zone where relatively high values are obtained.

Further downstream the heat transfer rate is reduced again towards anasymptotic
value which may be about equal to or even higher than the flat plate result. The
maximum heat transfer rate in the reattachment zone behind the two dimensional
backward facing step is found to increase with increasing Reynolds number, In
these tests the flow Mach number, Mf, is varied between 1.8 to 2.6 and the
enthalpy ratios, hse/h‘w are about 30 to 50, These variations seem to have only
a small effect on the parameter Nux/PrRexl/2 since all this data can be correlated

with relatively small scatter by the parameters Reh and hRel/z/L, as shown in

Figures 8 and 9,

The positions of the heat transfer peak behind the two dimensional step
are found to be at a distance of about 4 to 5 heights behind the step. These
positions are within the reattachment zone as indicated in Ref, 1. The value
of the maximum heat transfer rate as a function of position behind the separation

point is plotted in Fig. 10.

The heat transfer rates measured behind the axially symmetric backward

facing step (Ref. 2) are shown in Fig, 4, The heat transfer distribution behind




the step is qualitatively similar to that found in the two dimensional case.
A maximum value of heat transfer rate is clearly obtain and can be correlated
with the Reynolds number variation. The maximum heat transfer rate is located

at about 5 to 6 step heights, as is indicated in Fig. 10.

The sharp protruding leading edge model is of particular interest since
the separated flow over this model starts at the leading edge with about zero
initial boundary layer thickness, The model for the generation of this type of
a separated flow was suggested by R.D. Chapman (Ref. 15). This model is used
then for estimation of the pressure in the separated zone and also to obtain
experimentally the pressure profile of this well defined shear layer in the
region of reattachment to the surface, The heat transfer measurements in this
case are discussed in Ref. 4 and shown in Fig. 5. Here again the variation of
the local heat transfer rate is qualitatively similar to that obtain behind the
backward facing step. It is interesting to note that the separated zone in this
ctase is longer than the one obtained in the case of a backwrad facing step, with
a comparable step height where an initial boundary layer is present. In the
protruding leading edge model case, the maximum heat transfer rate is found to
be at about 8 step heights behind the separation point, and the value of the
maximum heat transfer rate is significantly lower than that for the two-dimension-
al backward facing step. This result, and the other results plotted in Fig. 10,
suggest that the longer the mixing zone the lower the maximum heat transfer at

reattachment.




Measurements of heat transfer in the leading edge separation bubble
reported in Ref. 5 are shown in Fig., 6. Here again the heat transfer rate

just behind separation is very low and increases towards reattachment.

Measurements of the heat transfer rate on the blunt two dimensional base
are presented in Ref. 3 and are included in Figures 7, 8 and 9. In the blunt
base case, the maximum heat transfer rate which is found at the base center,
is of particular interest for the design of base heat shields. This maximum
value is relatively low at low Reynolds numbers but, at-high Reynolds numbers
may even be slightly higher than the flat plate value as indicated in Figures

7 to 9. |

V. DISCUSSION OF THE HEAT TRANSFER RATE MEASUREMENTS AND COMPARISON WITH
OTHER EXPERIMENTAL RESULTS.

Summary of the results of measurements of the maximum heat transfer rates
for the base type separated flows are presented in Figs., 7, 8 and 9. The maximum
heat transfer rate variations as a function of the flow Mach number, an in the
shock tube is presented in Fig, 7. It should be remembered here that while the
flow Mach number decreased from about 2.6 to 1,8 the Reynolds number ReL is
increased in these tests from about 103 to about 2 x 105 and, as discussed
previously, we expect that most of the increase in the maximum heat transfer
rates is due to this increase in ReL rather than due to the effect of the flow

Mach number variation. This becomes more evident when the data is plotted as

functions of Reynolds number dependent parameters as in Figs. 8 and 9., The data




is plotted as a function of Reh in Fig. 8 and as a function of hRet/z/L in

Fig. 9. It was shown in Ref. 16, that the pressure in a separated flow can

be correlated in the case of a very thin boundary layer at separation, i.e.

65 + 0, as a function Reh. In the present shock tube tests, the boundary

layer on the models is expected to be very thin due to the effect of the
extremely cold wall conditions. In this case it may be expected that the
maximum heat transfer rate will correlate relatively well in terms of Reh,
However, when initial boundary layer effects are more dominant,as in the two-
dimensional and axially symmetric backward facing step case, better correlation
is obtained when heat transfer data is plotted as a function of a ds/h related
parameter i.e., (hRei/z/L) as shown in Fig. 9. The following relations correlate

the data obtained in the shock tube experiments:

For cases with an initial boundary layer at separation,
1/2 n
q/qf_p = A(hRe; /L) (1)

For cases of a very thin ("zero") initial boundary layer at separation,

/e, = B Rep (2)

The empirical parameters, A, B, m and n for the various separated flow
geometries are presented in Tables 2 and 3. It was found that these forms
of relations can also be used for representation of the average heat transfer
rate in the separated flows measured in our tests, The values of the para-

meters for the evaluation of the average heat transfer rates are also presented

in Tables 2 and 3,
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In spite of the large interest in heat transfer in separated flows there
are relatively few measurements of local heat transfer rates in such flows.
Most of the available measurements are also limited to very few (sometime only
one or two) flow conditions in each investigation. It is therefore difficult
to systematically compare the results. However, in the following discussion
we will try to include whatever significant results that can be drawn out of
available measurements. In addition to the already discussed shock tube
experiments, heat transfer in base type separated flows were measured by:
Sanford and Ginoux (Ref. 9 - two-dimensional backward facing step) Baker and
Martin (Ref. 10 - two-dimensional backward facing step), Naysmith (Ref. 11 -
two-dimensional and axially symmetric backward facing steps),Thomann (Ref. 12-
two-dimensional backward facing step and spoiler in turbulent separation),
Bogdonoff and Vas (Ref. 17 - conical separation due to a spike) and by Bloom and
Pallone (Ref. 18 - cylindrical perturbances). The results obtained in these
investigations indicate, in almost all cases, a peak heat transfer rate in the
reattachment zone. It is therefore interesting to compile the mecasured peak
heat transfer rates and plot them as a function of the position where these peaks
occur, as is shown in Fig. 10. The data of Sanford and Ginoux (Ref. 9) did not
indicate any peak in heat transfer expect in the case of transitional or turbulent
reattachment. It is suggested in Ref. 9 that the peaks in the heat transfer rate
at reattachment occur only if transition occurs ahead of reattachment. Although
results of most of the measurements support the conjecture that transition in the

shear layer enhances the heat transfer at reattachment (particularly shown in the
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results of References 1 and 10), the fact that in many other investigations

peaks in heat transfer were detected even at Reynolds numbers where the flow

is expected to be laminar may indicate that a peak in heat transfer rate can

be also associated with the reattachment of the laminar shear layer to a

surface. This is well illustrated in the heat transfer measurements of

Bogdonoff and Vas (Ref. 17). They reported the measurements of the heat transfer
of the reattachment zone due to a shear layer generated by spikes of various
lengths on a hemispherical nose. These measurements were conducted in a Helium

5 to 2 x 106 based on the

wind tunnel at M = 14 and Reynolds numbers of 3 x 10
spike length. At these conditions the shear layer should be completely laminar,
They found that although the heat transfer to the stagnation region was greatly
reduced, the heat transfer to the rear part of the hemisphere, where the re-
attachment occurs is greatly increased. The highest values of heat transfer

in the reattachment zone were obtained with the short spike, then, as the spike
length was increased, the heat transfer rates decreased, The measurements with
the presence of the spike, normalized by the value of the heat transfer to that
portion of the hemisphere when measured without a spike, are included in Fig. 10
as well, The results obtained in this case seem to describe well the trend
presented by the data plotted in Fig. 10 from all the various investigations

at Mach numbers varying from low supersonic Mach numbers in the shock tube to
hypersonic Mach numbers of up to 14 obtained in the Helium wind tunnel. It may
be therefore stated' that the experimental results indicate that peaks in heat

transfer occur in the reattachment zone in laminar as well as transitional and

turbulent flows. It is also shown that the shorter the shear layer in the mixing
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zone of the separated flow, the higher the value of the maximum heat transfer
rate at reattachment. This variation of the peak in the heat transfer rate

may be attributed to the fact that the shear layer is also thinner for the

cases of the short mixing layers. This observation is in line with the
previously observed pressure variation in separated flows where it was found

that, the shallower and, therefore, the longer the mixing zone, the higher is

the base pressure. Now, the length of the separated zone has been found to
depend mainly on thc Reynolds number of the flow and the state of the mixing

in the shear layer (laminar, transitional or turbulent). It is therefore also
reasonable to expect that the heat transfer rate will be dependent mainly on

the Reynolds number as indeed is suggested by the present measurements. Further-
more, most of the effects of the Mach number and of the stagnation tc wall enthalpy
ratio, which are varied over a wide range in the discussed experiments, result in
the variation of the length of the mixing zone and the position of reattachment.
Therefore, the inverse relation between the maximum heat transfer at reattach-
ment and the distance between the separation point to the position of this peak is
physically plausible., Such a relation is evident from the data collected in Fig.
10. Some of these hypotheses are in agreement with the results of an analytical

calculation of Reference 13 which will be presented.

VI. COMPARISON OF THE EXPERIMENTAL DATA WITH A CALCULATION OF THE HEAT TRANSFER
RATE BEHIND THE TWO DIMENSIONAL STEP.

A method based on the use of the integral conservation equations for the
calculation of heat transfer distribution behind a two dimensional backward

facing step was presented by Seginer and Rom in Ref. 13. The formulation of the
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equations follows the Crocco-Lees integral analysis modified to include heat
transfer effects. A short resume of this method will be presented here in
order to facilitate the discussion concerning the comparison of these analytical

calculations with the experimental data.

Using a model of the flow field shown in Fig. 11, the integral conservation

equations can be written (following the assumptions and notation of Ref. 13):

dm/dx = peueas[dd/dx - 0] = p/¢e[d6/dx - 0] (3)
and K = (d§/dx - 0)
(d/dx)(mxuwe) = we(dm/dx) - §(dp/dx) - [(pwe)/¢e](cf/2) (4)
(d/dx) (me, ) = dm/dx + (p/%)cq (5}
I * L 2 3 *
where K, = ﬁﬁ; = (-8 - & )/(6-6) (6)
H * LR 2] *
Ky = = (-6 +6 )/(6-6) (7
se
where we define
8 é 2 §
m = foudy ; I=/pu"dy and H =/ h pudy
) o o °

and Ce and c_ are the friction and heat transfer coefficients respectively.

The equations for the external flow are:
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m = (p8)/ ¢, ®)
dp/p = - (dw,/¢.) (9)
0 = O(we) (10)
where
b = (T /T ) (1/yw)
and ¢, = (Tl/Tse)(l/vwl)

The conservation equations (Eqs. 3, 4 and 5) and the external flow equations
(Eqs. 8, 9 and 10) with the additional correlation functions for Cer cq’ K
and % enable a complete mathematical formulation of the problem. Since the

correlation relations between the various parameters must be obtained from in-

dependent analysis or empirical data, the present analysis is limited to cases

where such correlation functions are available or can be speculated. In our case

of separated flows with heat transfer there is only very limited experimental data
to guide the selection of the correlation functions. In Reference 13 the variation
of the correlation functions in cases of attached flows with pressure gradients and
heat transfer were studied. Based on the results of these calculations, the
correlation function variation in the separated flow behind a two-dimensional step

shown in Fig. 12 were selected.

These correlation functions are defined as follows:
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s

The heat transfer correlation function

-2/3

B(xu) = cq/{Pr [(hu/hse)-r](ue/ﬁ)} (1)

The mass correlation function

C(x,) = K -(x'n/ue) (12)

and the friction correlation function
D(x,) = cp - (M/u) (13)

The pressure distribution behind a two dimensiona: hac'.. - icing step
was measured and can be approximated in a simplified “orm as shown ~ Fig. 13.
Using this pressure variation and the correlation functions presented in Fig,
12, the heat transfer variation behind a backward facing step can be calculated.
The results obtained in Ref. 13 for flow conditions corresponding to those of
the shock tube experiments of Ref. 1 are presenred in Fig. 4. These hest transfer
measurements are very similar qualitatively to those obtained in the measurements
of Ref. 1, which are reproduced in Fig. 15. Better quantitative agreement can be
obtained by appropriate modification to the correlation functions used in the
calculation of Ref. 13. The appearance of peaks in the heat transfer rates in
the reattachment zone at increased ReL in this calculation suggest that these
peaks (obtained also in the many experimental investigations) are associated with
the recompression mechanism at reattachment, It is seen from Fig. 13 that the

pressure rise at reattachment steepens with increasing Re The peak in the heat

L
transfer rates obtained in the calculation may be due to the sharp rise in the

pressure at reattachment.
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VII. CONCLUSIONS

The local heat transfer rate measurements in base type separated flows
indicate heat transfer rates which are low in the ''dead-water'" zone, increase
to a maximum in the reattachment zone and then decrease to an asymptotic value

downstream of reattachment,

The value of the maximum heat transfer rate in the reattachment is in-
creased with increasing Reynolds number for a fixed geometry separated flow.
1t seems that the peak of the heat transfer rate becomes very high, about 7
to 10 times flat plate value, when the transition appears ahead of reattachment.
The results of many investigations indicate that when the shear layer in the
mixing zone of the separated flow becomes shorter, and therefore this shear
layer is also thinner at reattachment, then the value of the maximum heat
transfer rate at reattachment is found to increase considerably. The data of
the various investigations indicate generally-an inverse relation between the
maximum heat transfer rate at reattachment and the distance from the separation

point to the position of this peak.
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TABLE 2

AVERAGE AND MAXIMUM HEAT TRANSFER RATE PARAMETERS FOR CASES WITH INITIAL

BOUNDARY LAYER,

o 1/2 n
q = A(hRe, "/ /L) U.p.

4
!
]
i
g

i
|
h
i
!

! i
: q,,e/4 :
I Ve L. qmax/qf.p. f
. 1
i A n A n ;
4’ 1
Two-Dimensional |
) i l
‘Backward Facing Step |  0.02 | 1.2 0.0465 1.3
3 |
: \ )
‘Axially Symmetric L
{Backward Facing Step |  0.037 1.0 0.068 | 1.0
%
‘Two-Dimensional :
; | .
!Blunt Base 0.018 0.77 0.034 ; 0.7
} !
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TABLE 3

AVERAGE AND MAXIMUM HEAT TRANSFER RATE PARAMETERS FOR CASES WITH ZERO

BOUNDARY LAYER AT SEPARATION

m
= B Re
9 h qf.p.
—
!
| : .
! qave/qf.p. i qmax/qf.p. :
| : '
1 B m 3 B m
i i |
a - : 1
E T 1 1
| | , ,
ISharp Protruding I \ %
! !

Leading Edge 0.04 | 0.27 | 0.057 ‘ 0.34

| |

| | .[
jLeading Ldge i i l i
Separation Bubble 0.0057 |, 0.45  0.,0076 \ 0.45 |

-4




I4—+—283 —~
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104—18.3—
a
39 | AXISYMMETRIC STEP
60.5°
144
411 |’
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el | T PROTRUDING SHARP LEADING EDGE
25 414
AR '
57, | = LEADING EDGE BUBBLE

( ALL DIMENSION - MILLIMETERS )
ae POSITION OF THIN FILM GAGES

FIG. 1 Models of base type separated flows used in the shock tube experiments,
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Nux/F J AXISYMMETRIC STEP
‘ Rel h-: 1-30 mm
1 1 575—: ;"\
8 !{, \
,;. Vi AV
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N Q\(\ B0
2
1 |
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03 ﬁ
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ol _
.008
1.0 5.0 10.0 AX/h 15.0
FIG. 4 Nux/Pr chl/Z as a function of ax/h for the axially symmetric step model.
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B8+H—PROTRUDING SHARP LEADING EDGE
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01 %
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FIG, 5 Nux/Pr Rex / as a function of Ax/h for the protruding leading cdge model.
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LEADING EDGE BUBBLE
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FIC. 6 Nux/Pr chl/2 as a function of Ax/h for the leading

edge separation bubble model.
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FIG. 1 Simplified pressure distributions behind a backward facing step.
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